压力容器在石油化工生产中占有十分重要地位。压力容器可以充当反应、交换能量、分离、塔器、贮存、运输等石油化工设备。压力容器可以充当反应、交换能量、分离、塔器、贮存、运输等石油化工设备。它们具有炮炸危险,它们的安全运行直接关系企业生产和人身安全。所以压力容器产品质量历来受到国家高度重视。近十余年来,我国压力容器设计、制造,管理走上了法制管理轨道,产品质量正稳步提高。
焊接质量高且稳定,焊缝表面美观平整。焊接成为压力容器生产关键工序,焊接的质量是保证压力容器质量非常重要环节。单焊接质量受多种因素影响:焊工技能、刚才化学成份、力学性能、焊接材料、焊接工艺及设备、环境等等都可以影响焊接质量。
为了提高压力容器产品质量,国家通过取得制造许可证方可生产。对取得制造许可证厂家,制定焊接规程,方允许生产,焊工持证上岗,压力容器检验,加强质量保证体系各个环节控制管理,目的就是要尽力避免减少质量隐患,以保证压力容器产品质量。
随着石化工业飞速发展,压力容器正向大型化,高强度方向发展,对压力容器质量提出更高要求,促使压力容器焊接技术、工艺要不断提高。
二、焊接缺陷
1、焊接接头裂纹产生
大家知道,焊接接头是一个组织不均匀体和力学性能不均匀体。制造所需的部件必须严格按照工艺设计标准进行生产,在制造时结合锅炉工作环境的实际情况,以设计工艺为基准对锅炉合理改造,使其更完善。施焊接过程焊接接头熔合线附近,温度在固相和液相之间,冷却后组织属于过热组织、晶粒粗大、化学成份和组织都较不均匀、强度上升、塑生降低。熔合线外侧为“过热区”,此域晶粒粗大,常出现魏氏组织和索氏体,因而韧性显著降低。
过热区外侧为“正火区”,由于加热和冷却发生重结晶过程,钢制压力容器,得到细化细小均匀的铁素体加珠光体。正火是将焊件加热到Ac或Acm以上30—50℃,保温后从炉中取出在空气中冷却。再外侧是“不安全重结晶去”,加热温度在AC1-AC3之间区域,该区加热时钢中珠光体和部分铁素体转变为晶粒比较细的奥氏体,单仍保留部分铁素体,在冷却时奥氏体转变为细小铁素体和珠光体,而未熔入奥氏体的铁素体不发生转变,晶粒比较粗大,形成结晶颗粒大小均匀组织,并仍保留原始组织中的带状特性。
由于热影响及区熔池的结晶和换热方向刚好相反,也即热影响区至融合线至焊缝为结晶方向,熔合线处先结晶,熔池中心结晶较慢。使得熔池杂质由熔合线向中心移动,因而熔池*处易产生夹渣缺陷,而熔合线处由于冷却速度快,易产生裂纹。
焊接腐蚀裂接头可以由于钢材淬硬性产生裂纹,氢扩散产生冷裂纹,再热裂纹,晶间纹,以及由于焊接规范和工人技能因素产生焊接缺陷等。实践证明,裂纹对压力容器产品质量危害较严重。
1)热裂纹
是由于焊接熔池在结晶过程中存在着偏析现象,偏析出的物质多为低熔点的共品和杂质,结晶过程以液态间层存在,由于熔点低,往往最后结晶凝固,凝固后强度也较低。当焊接拉伸应力足够大时,液态间层拉开或凝固后不久被拉断而成裂纹。
2)冷裂纹
是指焊接时在A3的下温度冷却中或冷却至保温以后产生的裂纹。形成裂纹温度低,在马氏体转变范围,即在200-300℃以下,故称冷裂纹。有时焊后几小时或几天后,甚至长时间才出现裂纹,故又称为延迟裂纹。其危害性更大。
冷裂纹往往由于电弧燃烧时空气侵入或药皮物质分解等,氢进入熔池熔于铁水中,因高温时铁水溶解大量氢气,在低温时溶解度大大降低,溶于铁水中氢从铁水中析出,氢扩散聚集到钢中缺陷处,亳州压力容器,产生局部压力增大,促使钢产生裂纹,所以冷裂纹又称为氢致裂纹。6、对脱碳层宽度影响热处理温度越高,保温时间越长,脱碳层狂度越大,这是因为碳化物形成时元素含量不等,引起碳扩散,碳向含量低一侧扩散,产生脱碳层,异种钢接头尤为严重。
钢在轧制时内部存在严重层状非金属夹杂物,使厚度方向拉伸塑性很差,在板厚方向存在高拉压力,产生台阶状层状撒裂。
3)再热裂纹
一些含、Cr、Mo、V、B等合金之素的钢材焊后不产生裂纹。在消应力处理时,或在一定温度下长时间使用后,沿热影响区晶界产生裂纹,称再热裂纹,简称SR裂纹。
再热裂纹是由于一次热后过程中过饱和和固溶的碳化物(主要是Cr、Mo、V的碳化物),在再加热时,再次析出,造成晶内强化,使滑移应变集中原先奥氏体晶界,当晶界塑性应为能力不足以承受松弛应力过程产生的应变时就产生再热裂纹。
这类钢材在600℃附近有一敏感区。**过650℃时敏感性减弱。
4)防止裂纹产生的方法
为了防止裂纹产生,可以限制钢材和焊材S、P含量:调节钢材化学成份;细化焊缝晶粒;提高焊材碱度;改善偏析;控制焊接规范;提高焊缝系数,多层多道焊,采用小线能量;铸件断弧,减少弧坑。
还可以选用低氢碱性焊条,焊条严格烘干,随用随取;选用合理焊接规范;焊后立即消氢;提高钢材质量,减少钢材层状夹杂物;财务降低焊接应力的各种工艺措施。减少残余应力和应力集中;预热机缓冷,焊后热处理。这些办法,只要运用得当都可以收到提高焊接质量,防止缺陷的作用。因失稳往往在强度破坏前发生,所以稳定性计算是外压容器设计中主要考虑的问题。
至于未焊透,未熔合、夹渣、气孔、焊缝表面缺陷如咬肉,焊缝尺寸等都可以通过无损探伤检查,定出缺陷的位置,采取合理、有效返修工艺,压力容器标准,认真操作,也可以达到消除焊缝缺陷,保证产品内在质量目的。
压力容器的压力可以来自两个方面,一是压力是容器外产生(增大)的,二是压力是容器内产生(增大)的。储气罐密封性好;密封式设计彻底杜绝了空气飘尘中有害物质和蚊虫罐内,确保水质不受外界污染和滋生红虫。工作运行的环境比较复杂,在锅炉运行的过程中,经常出现**出其标准的运载能力,在锅炉工作的过程中*受到工作介质和灰尘的侵蚀,较有可能发生事故。压力容器厂家并对每个类别的压力容器在设计、制造过程,以及检验项目、内容和方式做出了不同的规定。压力容器已实施进口商品安全质量许可制度,未取得进口安全质量许可证书的商品不准进口。不锈钢储罐专门用来储存气体的设备,同时起稳定系统压力的作用,根据储气罐的承受压力不同可以分为高压储气罐,低压储气罐,常压储气罐。
工作压力,多指正常操作条件下的压力,可能会出现在容器的**部。
设计压力,系是指在相应设计温度下用以确定容器壳体厚度的压力,亦即标注在铭牌上的容器设计压力,压力容器的设计压力值不得低于工作压力;当容器各部位或受压元件所承受的液柱静压力达到5%设计压力时,则应取设计压力和液柱静压力之和进行该部位或元件的设计计算;装有安全阀的压力容器,其设计压力不得低于安全阀的开启压力或压力。容器的设计压力确定应按GB 150的相应规定。奥氏体不锈钢制容器用水进行液压试验后应将水渍去除干净,当无法达到这一要求时,应控制水的氯离子含量不**过25mg/L。
2、氢的效果在焊接高温下,一些含氢的化合物分辩分出原子状况的氢,很多的氢溶解于熔池金属中。跟着熔池温度的下降,氢在金属中的溶解度急剧下降。在压力容器中,封头与筒体连接时,只能采用球形或椭圆形封头,不允许用平盖形封头。但焊接熔池的冷却速度很快,氢来不及逸出而残留在焊缝金属中。氢在奥氏体和铁素体中的溶解度及分散才能也有明显不同。
燃气锅炉厂家介绍一般焊缝金属的碳当量总比母材低一些,因此焊缝在较高温度下就发作奥氏体分化,这时近缝区还没有发作奥氏体改变。由于焊缝金属中氢的溶解度俄然下降,分散才能进步,氢就向近缝区的奥氏体中分散。a.碳素钢用于介质腐蚀性不强的常压、低压容器,壁厚不大的中压容器,锻件、承压钢管、非受压元件以及其他由刚性或结构因素决定壁厚的场合。这样就使近缝区聚集了很多的氢。跟着温度的下降,力容器近缝区的奥氏体发作改变时,温度已经很低,氢的溶解度更低,并且分散才能也已很弱小。所以氢便以气体状况进到金属的纤细孔隙中并构成很大的压力,使部分金属发生很大的应力,然后构成冷裂纹。